

深圳市康华尔电子有限公司

SHENZHEN KONUAER ELECTRONICS CO.,LTD

樣品承認書

SAMPLE APPROVAL SHEET

CUSTOMER:

SIZE UP :

声表面谐振器

Volume:

R315M

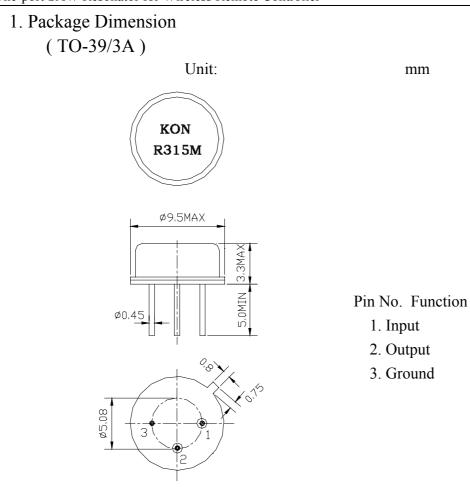
NUMBER:

DATE:

TO-39-DIP

承認後請寄回一份

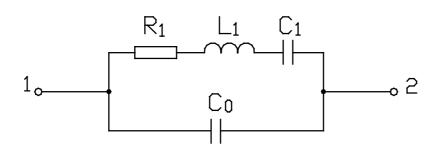
PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL


承認結果 CONCLUSION	客戶簽名 SIGNATURE	客戶承認章 STAMP	日期 DATE	備注 REMARK
合格	biointicke		DITL	
ACCEPT				
不合格				
REJECT				

制表: JACK LIU/

审核:

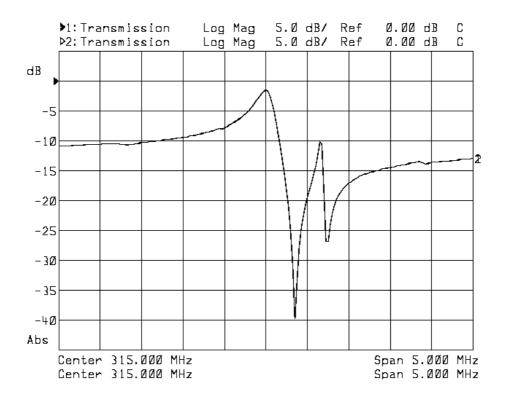
(公章)


尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!

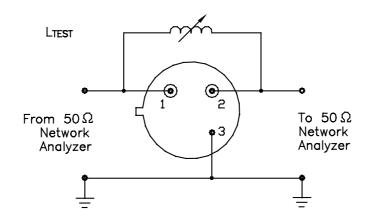
2. Marking

KON

- R315.00
 - 1. Color: Black or Blue
 - 2. DR: Manufacture's logo
 - 3. 1: One-port SAW Resonator
- 4. 315.00: Center Frequency (MHz)
- 3. Equivalent LC Model


4. Performance

4.1 Maximum Rating


DC Voltage V _{DC}	10V		
AC Voltage V _{PP}	10V (50Hz/60Hz)		
Operation Temperature	-40 to +85		
Storage Temperature	-45 to +85		
RF Power Dissipation	0dBm		

4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency		MHz	314.925	315	315.075
Insertion Loss		dB	—	1.3	2.5
Quality Factor	Unloaded Q		—	12,000	—
	50 Loaded Q		—	1,900	
Temperature	Turnover Temperature		10	25	40
Stability	Turnover Frequency	KHz		fo	
	Freq. Temp. Coefficient	ppm/ ²	—	0.037	—
Frequency Aging		ppm/yr	_	<±10	
DC Insulation Resistance		М	1.0		—
	Motional Resistance R ₁		—	23	29
RF Equivalent	Motional Inductance L ₁	μH	—	115.2	—
RLC Model	Motional Capacitance C ₁	fF	_	2.2	_
	Shunt Static Capacitance Co	pF	2.1	2.4	2.7

4.4 Test Circuit

Note: Reference temperature shall be 25 ± 2 . However, the measurement may be carried out at 5 to 35 unless there is a dispute.

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after
5 cycles of high and low temperature testing (one cycle: 80 for 30 minutes
25 for 5 minutes -25 for 30 minutes)than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230 ± 5 for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.