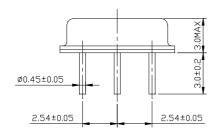


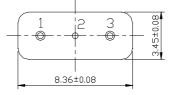
深圳市康华尔电子有限公司

SHENZHEN KONUAER ELECTRONICS CO.,LTD

樣品承認書

SAMPLE APPROVAL SHEET


	CUST	TOMER:			-				
	SIZE UP:		声表面谐振器		-				
	Volume:		R315M		-				
NUMBER:		BER:	D-11-DIP		_				
DATE:					-				
承認後請寄回一份 PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL									
承認結果	客戶簽名	客戶承認	章	日期	備注				
CONCLUSION	SIGNATURE	STAMP]	DATE	REMARK				
合格 ACCEPT									
不合格 REJECT									
制表: JACK LIU/			审核:						
			<u> </u>		(公章)				

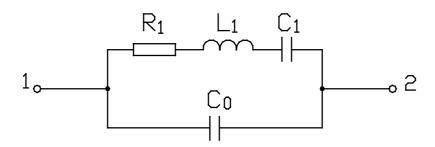

1. Package Dimension

(D11)

Unit: mm

Bottom View

Pin No. Function


- 1. Input
- 2. Ground
- 3. Output

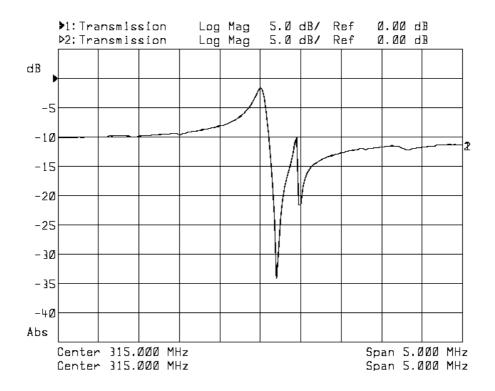
2. Marking

KON 315.00

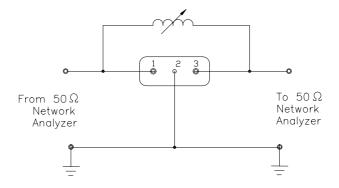
- 1. Color: Black or Blue
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 315.00: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V		
AC Voltage V _{PP}	10V (50Hz/60Hz)		
Operation Temperature	-40 to +85		
Storage Temperature	-45 to +85		
RF Power Dissipation	0dBm		


4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency fo		MHz	314.925	315	315.075
Insertion Loss		dB	_	1.3	2.5
Quality Factor	Unloaded Q		_	12,000	_
	50 Loaded Q	_	_	1,900	
Temperature	Turnover Temperature		10	25	40
Stability	Turnover Frequency	KHz	_	fo	
	Freq.Temp.Coefficient	ppm/ ²	_	0.037	_
Frequency Aging		ppm/yr		<±10	
DC Insulation Resistance		M	1.0	_	_
RF Equivalent RLC Model	Motional Resistance R ₁			23	29
	Motional Inductance L ₁	μH	_	115.2	_
	Motional Capacitance C ₁	fF	_	2.2	_
	Shunt Static Capacitance Co	pF	2.1	2.4	2.7

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be 25 ± 2 . However, the measurement may be carried out at 5 to 35 unless there is a dispute.

5. Reliability

- 5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s², duration 6 milliseconds.
- 5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.
- 5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.
- 5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 ± 2 for 48 hours, then kept at room temperature for 2 hours.
- 5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 ± 2 for 48 hours, then kept at room temperature for 2 hours.
- 5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80 for 30 minutes 25 for 5 minutes -25 for 30 minutes) than kept at room temperature for 2 hours.
- 5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).
- 5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230 ± 5 for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.